Friday, September 9, 2016

New IPC Standards For Printed Circuit Boards

NEW IPC-A-610F Acceptability of Electronic Assemblies


IPC-A-610 is the most widely used standard for circuit board production in the world. IPC-A-610F illustrates acceptability requirements for electronic assemblies with over 814 colour images and illustrations. Topics include flex attachment, board in board, part on part, lead free, component orientation and soldering criteria for through-hole, SMT (new termination styles) and discrete wiring assemblies, mechanical assembly, cleaning, marking, coating, and laminate requirements. This revision F includes two new SMT termination styles, and changes in plated-through hole fill and BGA void criteria. Major topics include flex attachment, board-in-board, part-on-part, both lead-free and tin-lead criteria, component orientation and soldering criteria for through hole, SMT, cleaning, marking, coating and laminate requirements. IPC Standards for printed circuit boards: order and download IPC A-610F


IPC-A-610 is invaluable for all inspectors, operators and trainers. Revision F has 814 photos and illustrations of acceptability criteria — 86 of them new or updated. The document is most often used with the material and process standard IPC J-STD-001.


NEW J-STD-001F Requirements for Soldered Electrical and Electronic Assemblies


J-STD-001F is recognized worldwide as the sole industry-consensus standard covering soldering materials and processes. This revision includes support for both traditional solder alloys and for lead-free manufacturing. Revision to plated-through hole, PTH, minimum fill requirements; criteria for two new SMT termination types; and expanded conformal coating criteria. Clarification of criteria descriptions for easier understanding. The requirements for all three classes of construction are included. Full color illustrations are provided for clarity. This standard fully complements IPC-A-610F and is supported by IPC-HDBK-001. Order and  download IPC J-STD-001F


IPC-7527 Requirements for Solder Paste Printing


IPC-7527 covers the many aspects of solder paste application, from initial placement on the board through production and testing. To equipment operators, the new standard serves as a reference guide with more than 50 photos packed into the 15-page standard.  IPC-7527 provides the operators with a standard that will help them make the right decisions when they face issues in production, and no professionals or specialists are present.


While there are standards that detail what a completed assembly should look like, IPC-7527 is the first one to provide requirements for what the printed solder paste should look like and how far off centers can be before they’re considered defects. It covers everything from basic squeegees to jet dispensers and needle dispensers to closed print heads. In addition, IPC-7527 provides information on automated paste inspection using either cameras or lasers. Order and download IPC-7527.


IPC-7093 Design and Assembly Process Implementation for Bottom Termination components




This standard describes the design and assembly challenges for implementing Bottom Termination surface mount Components (BTCs) whose external connections consist of metallized terminals that are an integral part of the component body. The BTCs in this document include all types and forms of bottom-only termination components intended for surface mounting. This includes such industry descriptive nomenclature as QFN, DFN, SON, LGA, MLP and MLF. The focus of the information is on critical design, assembly, inspection, repair, and reliability issues associated with BTCs.


The target audiences for this document are managers, design and process engineers, and operators and technicians who deal with the electronic design, assembly, inspection and repair processes. The intent is to provide useful and practical information to those companies who are using or considering tin/lead, lead free, adhesives or other forms of interconnection processes for assembly of BTC type components. Although not a complete recipe, the document identifies many of the characteristics that influence the successful implementation of robust and reliable assembly processes and provides guidance information to component suppliers regarding the issues being faced in the assembly process. Order and  download IPC-7093


IPC-7095C Design and Assembly Process Implementation for BGAs




Implementing ball grid array (BGA) and fine-pitch ball grid array (FBGA) technology presents some unique challenges for design, assembly, inspection and repair personnel. IPC-7095C delivers useful and practical information to anyone currently using BGAs or FBGAs. Many issues have become especially important due to the change in the alloys of the ball, the ball shape, and the attachment procedures. The major emphasis of Revision C is to provide information on some of the new mechanical failure issues such as cratering or laminate defects caused after assembly.


In addition to providing guidelines for BGA inspection and repair, IPC-7095C addresses reliability issues and the use of lead-free joint criteria associated with BGAs. There are many photographs of X-ray and endoscope illustrations to identify some of the conditions that the industry is experiencing in the implementation of BGA assembly processes. Order and download IPC-7095C


IPC-7711/7721B Rework, Modification and Repair of Electronic Assemblies




This guide includes everything needed for repair and rework of electronic assemblies and printed circuit boards! IPC-7711B/7721B Rework, Modification and Repair of Electronic Assemblies has received a complete procedure by procedure update to assure applicability to both lead free and traditional SnPb soldered assemblies. Order and download IPC-7711/7721B.




Purchase and Download IPC Standards For Printed Circuit Boards from Electronics.ca Publications today!


Effective January 1, 2015, a price increase of 4 percent will be implemented on all standards.




IPC Standards For PCB Design and CADIPC Member

 











New IPC Standards For Printed Circuit Boards

No comments: